File: CHN Calculations Examples 26-Feb-2008

Empirical Formula

Page 241, Problem 57 Compound contains

Phosphorus 90.10%

Hydrogen 8,90 %

Page 241, Problem 58

Compound contains

Hydrogen 3.09%

Phosphorus 31.60%

Oxygen 65.31%

Page 241, Problem 59

0.5998 g of a sample

Carbon 0.2322 g

Hydrogen 0.05848 g

Oxygen 0.3091 g

Page 242, Problem 60

Barium 58.84 %

Sulfur 13.74 %

Oxygen 27.43 %

Chapter 9, P 256

 $HF + SiO_2 -> Si F_4 + H_2O$ 20 g HF requires how much SiO_2

NaHCO₃ + HCl -> NaCl + H₂O + CO₂ 1.00 g NaHCO₃ requires how much HCl

 $Mg (OH)_2 + 2 HCl \rightarrow 2 H_2O + MgCl_2$ 1.00 g Mg (OH)₂ requires how much HCl – in moles

A. Determine the Empirical Formulae:

- 1. H 2.055%
 - S 32.70%
 - O 65.25%
- 2. C 59.96%
 - H 13.42%
 - O 26.62%
- 3. A 3.450 g of a sample of nitrogen reacts with 1.970 g of Oxygen.
- 4. An organic chemical gives the following analysis:

5.667 g Carbon

0.3165 g Hydrogen

5.566 g Chlorine

- 5. Cu 66.75%
 - P 10.84%
 - O 22.41%
- 6. A compound containing only Carbon, Hydrogen and Oxygen gives the following analysis: 40.00%

 \mathbf{C}

H 6.700%

The Molar Mass is between 115 and 125 g/mole. What is the Empirical and Molecular formulae.

- 7. An organic compound containing only C, H, N and O has the following analysis
 - C 49.47%
 - H 5.191%
 - N 28.86%

The approximate molar mass is 194. What is the Empirical and Molecular formulae.

ANSWERS TO ABOVE

Being an Synthetic Organic Chemist, I spent the past weeks synthesizing several compounds and here's the analysis:

A. Determine the Empirical Formulae:

1.	Η	2.055%	2.055 g / 1.008 g/M = 2.039 M	2.039 M/ 1.020 M = 1.999	= 2	
	S	32.70%	32.70 g / 32.07 g/M = 1.020 M	1.020 M / 1.020 M = 1	= 1	
	O	65.25%	65.25 g / 16.00 g/M = 4.078 M	4.078 M / 1.020 M = 3.998	= 4	
				H_2SO	O_4	
2.	C	59.96%	59.96 g / 12.01 g/M = 4.993 M	4.993 M / 1.664 M = 3.001	= 3	
	Н	13.42%	13.42 g / 1.008 g/M = 13.31 M	13.31 M / 1.664 M = 7.999	= 8	
	Ο	26.62%	26.62 g / 16.00 g/M = 1.664 M	1.664 M / 1.664 M = 1	= 1	
		Isopropyl Alcohol / Rubbing Alcohol = $H_3C-CH_2OH = C_3H_8O$				

3. A 3.450 g of a sample of nitrogen reacts with 1.970 g of Oxygen.

```
3.450 g N 3.450 g / 14.01 g/M = 0.2463 M 0.2463 M / 0.1231 M = 2.001 1.970 g O 1.970 g / 16.00 g/M = 0.1231 M 0.1231 M / 0.1231 M = 1 N_2O
```

4. An organic chemical gives the following analysis:

6	8	
5.667 g Carbon	5.667 g / 12.01 g/M = 0.4719 M	0.4719 M / 0.1570 M = 3.006
0.3165 g Hydrogen	0.3165 g / 1.008 g/M = 0.3140 M	0.3140 M / 0.1570 M = 2
5.566 g Chlorine	5.566 g / 35.45 g/M = 0.1570 M	0.1570 M / 0.1570 M = 1
-	Ethyl Chloride H ₃ C-CH ₂ -CH ₂ Cl	C_3H_2Cl

5.	Cu	66.75%	66.75 g / 63.55 g/M = 1.050 M	1.050 M / 0.3500 M = 3
	P	10.84%	10.84 g / 30.97 g/M = 0.3500 M	0.3500 M / 0.3500 M = 1
	O	22.41%	22.41 g / 16.00 g/M = 1.401 M	1.401 M / 0.3500 M = 4.003
				Cu ₃ PO ₄

6. A compound containing only Carbon, Hydrogen and Oxygen gives the following analysis:

C
$$40.00\%$$
 $40.00 \text{ g} / 12.01 \text{ g/M} = 3.331 \text{ M} / 3.331 \text{ M} / 3.331 \text{ M} = 1$

H
$$6.700\%$$
 $6.700 \text{ g} / 1.008 \text{ g/M} = 6.647 \text{ M}$ $6.647 \text{ M} / 3.331 \text{ M} = 1.995$

O 100 % - 40.00% - 6.700% = 59.33 % O

53.30 g / 16.00 g/M = 3.331 M 3.331 M / 3.331 M = 1
$$C_1H_2O$$

 $C_1H_2O_1 = 12.01 + 2 * 1.008 + 16.00 = 30.03 \text{ g/M}$

The Molar Mass is between 115 and 125 g/mole. What is the Empirical and Molecular formulae.

$$2 * 30.03 = 30.06$$
 $3 * 30.03 = 90.09$ $4 * 30.03 = 120.12$ $4 * C1H2O1 = C4H8O4$

7. An organic compound containing only C, H, N and O has the following analysis

C
$$49.47\%$$
 $49.47 \text{ g} / 12.01 \text{ g/M} = 4.119 \text{ M}$ $4.119 \text{ M} / 1.03 \text{ M} = 3.999$

N
$$28.86\%$$
 $28.86 \text{ g} / 14.01 \text{ g/M} = 2.060 \text{ M}$ $2.060 \text{ M} / 1.03 \text{ M} = 2$

16.48 g / 16.00 g/M = 1.03 M
1.03 M / 1.03 M = 1

$$C_4H_5N_2O$$

 $C_4H_5N_2O = 4 * 12.01 + 5 * 1.008 + 2 * 14.01 + 16.00 = 90.09$

The approximate molar mass is 194. What is the Empirical and Molecular formulae.

$$2 * 90.09 = 192.18$$
 2 $C_4H_5N_2O = C_8H_{10}N_4O$